Table 3. Examples of compounds with species $X Y X$ in the space group $C 2 / c$ with unit-cell dimensions and geometry of the bridging groups, when known

	Ref.	a	b	c	β	$\mathrm{X}-\mathrm{Y}-\mathrm{X}$	X-Y
$\mathrm{CH}_{2}\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2}$	a	12.55	7.75	7.30	$90 \cdot 5$	119.7 (7) ${ }^{\circ}$	1.770 (7) \AA
$\mathrm{CH}_{2}\left(\mathrm{SO}_{3} \mathrm{NH}_{4}\right)_{2}$	b	12.70	7.85	$7 \cdot 65$	$92 \cdot 6$		
$\mathrm{NH}\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2}$	c	12.43	$7 \cdot 46$	$7 \cdot 18$	91.2	$124 \cdot 5$ (5)	1.662 (5)
$\mathrm{NH}\left(\mathrm{SO}_{3} \mathrm{NH}_{4}\right)_{2}$	b	12.72	$7 \cdot 74$	$7 \cdot 49$	$92 \cdot 8$		
$\mathrm{NH}\left(\mathrm{SO}_{3} \mathrm{Rb}\right)_{2}$	b	12.80	$7 \cdot 68$	$7 \cdot 45$	91.9		
$\mathrm{NH}\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$	d	12.71	$7 \cdot 51$	8.07	$97 \cdot 2$	125.0 (1)	1.645 (1)
$\mathrm{O}\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2}$	e	12.35	$7 \cdot 31$	$7 \cdot 27$	$93 \cdot 1$	$124 \cdot 2$ (3)	1.645 (5)
$\mathrm{O}\left(\mathrm{CrO}_{3} \mathrm{NH}_{4}\right)_{2}$	f	$13 \cdot 26$	$7 \cdot 54$	7.74	$93 \cdot 2$	115	1.91 (5)
$\mathrm{S}\left(\mathrm{SO}_{3} \mathrm{Tl}\right)_{2}$	g	13.20	$7 \cdot 45$	7.58	91.0		
$\mathrm{CH}_{2}\left(\mathrm{POCl}_{2}\right)_{2}$	h	15.87	$5 \cdot 85$	$9 \cdot 16$	$106 \cdot 6$	116.4 (4)	1.795 (4)

References: (a) Truter (1962). (b) Jones (1955). (c) Cruickshank \& Jones (1963). (d) This work. (e) Lynton \& Truter (1960). (f) Byström \& Wilhelmi (1951). (g) Ketelaar \& Sanders (1936). (h) Sheldrick (1975).
eral neutral or anionic species $\mathrm{X}-\mathrm{Y}-\mathrm{X}$ with bridging Y , such as $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{O}, \mathrm{S}$ and tetrahedral groups X , with central S, P or Cr (Table 3).

We thank Dr A. Blaschette, Braunschweig, for instigating this work and for a sample of the compound, Dr W. S. Sheldrick, Braunschweig, for performing the rigid-body calculations. The Deutsche Forschungsgemeinschaft has supported this research by providing the diffractometer.

References

Blaschette, A. (1969). Z. Naturforsch. 24b, 1485-1486. Byström, A. \& Wilhelmi, K.-A. (1951). Acta Chem. Scand. 5, 1003-1010.
Cruickshank, D. W. J. \& Jones, D. W. (1963). Acta Cryst. 16, 877-883.

Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Jones, D. W. (1955). Acta Cryst. 8, 66-67.
Kálmán, A. (1967). Acta Cryst. 22, 501-507.
Ketelatar, J. A. A. \& Sanders, J. K. (1936). J. Chem. Phys. 4, 621.
Klug, H. P. (1968). Acta Cryst. B24, 792-802.
Klug, H. P. (1970). Acta Cryst. B26, 1268-1275.
Lynton, H. \& Truter, M. R. (1960). J. Chem. Soc. pp. 5112-5118.
Mootz, D. \& Altenburg, H. (1971). Acta Cryst. B27, 1520-1523.
Sass, R. L. (1960). Acta Cryst. 13, 320-324.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, W. S. (1975). J. Chem. Soc. In the press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965).
J. Chem. Phys. 42, 3175-3187.

Truter, M. R. (1962). J. Chem. Soc. pp. 3393-3399.

Octamethylbicyclopentasiloxane

By Gy. Menczel and J. Kiss
Department of Solid State Physics, L. Eötvös University, H-1088 Budapest, Muzeum krt. 6-8, Hungary

(Received 11 November 1974; accepted 16 December 1974)

Abstract. $\mathrm{Si}_{5} \mathrm{O}_{6} \mathrm{C}_{8} \mathrm{H}_{24}, \mathrm{M} . \mathrm{W} .365 \cdot 5$, m.p. $115^{\circ} \mathrm{C}$, space
group $P 2_{1} / m$, monoclinic (from systematic absences
and E statistics), $a=8 \cdot 595(5), b=14 \cdot 321(5), c=8 \cdot 116$
(4) $\AA, \beta=90 \cdot 7^{\circ}$ (from oscillation and Weissenberg
photographs), $Z=2, D_{x}=1 \cdot 184, D_{m}=1 \cdot 163(6) \mathrm{g} \mathrm{cm}^{-3}$
(by flotation). The symmetry of the molecule is near to
$62 m$, the direction connecting $\mathrm{Si}(1)$ and $\mathrm{Si}(3)$ being the
pseudotrigonal axis.
Introduction. Garzó, Székely, Tamás \& Ujszászi (1971)
isolated and identified several new polycyclic methyl-
polysiloxane oligomers produced by thermal decompo-
sition of branched-chain polymers. The title compound was chosen first in order to determine its structure by X-ray methods. It will be denoted as $\mathrm{T}_{2} \mathrm{D}_{3}$ where T stands for the unit $\mathrm{CH}_{3} \mathrm{SiO}_{3 / 2}$ and D for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiO}_{2 / 2}$. Like several cyclic methylpolysiloxanes, $\mathrm{T}_{2} \mathrm{D}_{3}$ is characterized by high volatility. A crystal of the appropriate size for X-ray investigation volatilized after about 20 min at ambient pressure and temperature. The sample was sealed in a thin-walled glass capillary tube 0.3 mm in diameter). Weissenberg photographs were taken at $20-22^{\circ} \mathrm{C}$ with unfiltered Cu radiation around [001] (0-5 layers) and [$\overline{1} 10]$ (0-9 layers), all with the same
specimen of dimensions about $0.5 \times 0.5 \times 0.2 \mathrm{~mm} .2003$ independent reflexions were measured by visual estimation, but only 1032 were classed as observed, owing to the relatively short exposure times. No absorption corrections were made; 34 reflexions were left out of the calculations on account of extinction or the uncertainty of the intensity measurement. The structure was solved by direct methods; the program MULTAN (Main,

Fig. 1. Projection of the molecule along \mathbf{b}. Atoms coinciding in projection with their mirror equivalents are marked by full circles.

Fig. 2. Perspective view of the molecule (ORTEP: Johnson, 1965). Atoms below the mirror plane $P 1$ are indicated by contours only.

Germain \& Woolfson, 1970) produced signs for 249 reflexions with $E>1 \cdot 5$. An E map and a subsequent F_{o} map revealed the positions of all non-hydrogen atoms. The structure-factor calculation, with the rather high overall temperature factor $B=5.6 \AA^{2}$ given by the Wilson plot, resulted in $R=0.21$ for the observed data. After three cycles of block-diagonal least-squares refinement with individual isotropic and three with anisotropic thermal parameters R was 0.129 for all reflexions and 0.108 for those observed. A difference map gave uncertain maxima, and H atoms were ignored, but the scattering factor of C (International Tables for X-ray Crystallography, 1962) was replaced by that of N (Peyronel, 1954).* Table 1 contains the atomic parameters. Fig. 1 shows the projection of the molecule along [010], with the bond distances and $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles; other angles are listed in Table 2. Fig. 2 gives a perspective view of the molecule.

Discussion. Two possible isomeric structures can be given for $T_{2} D_{3}$:

(a)

(b)

The result of the present investigation shows that the actual structure corresponds to (a), confirming the suggestion of Garzó \& Alexander (1971) made on the basis of gas chromatographic analysis. The siloxane skeleton of the molecule consists of three planar fivemembered half rings intersecting at the axis through $\mathrm{Si}(1)$ and $\mathrm{Si}(3)$; two neighbouring half rings form an eight-membered ring. The plane $P 1$ through $\operatorname{Si}(1)$,

[^0]Table 1. Final fractional atomic coordinates $\left(\times 10^{4}\right)$ and thermal parameters $\left(\times 10^{4}\right)$ with estimated standard deviations in parentheses
(a) Fractional coordinates

	x	y	z
$\mathrm{Si}(1)$	$4713(4)$	7500	$10998(5)$
$\mathrm{Si}(2)$	$4216(5)$	7500	$7212(5)$
$\mathrm{Si}(3)$	$907(4)$	7500	$8657(5)$
$\mathrm{Si}(4)$	$2111(4)$	$8979(3)$	$11150(5)$
$\mathrm{O}(1)$	$5002(13)$	7500	$8997(13)$
$\mathrm{O}(2)$	$2343(13)$	7500	$7396(15)$
$\mathrm{O}(3)$	$1062(9)$	$8413(7)$	$9842(12)$
$\mathrm{O}(4)$	$3730(9)$	$8414(6)$	$11502(11)$
$\mathrm{C}(1)$	$6606(15)$	7500	$12080(16)$
$\mathrm{C}(2)$	$4864(16)$	$8606(12)$	$6145(15)$
$\mathrm{C}(3)$	$-910(17)$	7500	$7559(21)$
$\mathrm{C}(4)$	$2616(14)$	$10128(9)$	$10145(20)$
$\mathrm{C}(5)$	$971(20)$	$9120(15)$	$13127(21)$

Table 1 (cont.)
(b) Thermal parameters in the form $\exp \left[-\left(h^{2} B_{11}+h k B_{12}+h l B_{13}+k^{2} B_{22}+k l B_{23}+l^{2} B_{33}\right)\right]$

	B_{11}	B_{12}	B_{13}	B_{22}	B_{23}	B_{33}
$\mathrm{Si}(1)$	$96(4)$	0	$-54(8)$	$64(2)$	0	$133(5)$
$\mathrm{Si}(2)$	$114(5)$	0	$-50(10)$	$149(4)$	0	$129(6)$
$\mathrm{Si}(3)$	$84(4)$	0	$-75(8)$	$74(2)$	0	$169(6)$
$\mathrm{Si}(4)$	$139(3)$	$39(5)$	$-117(9)$	$84(2)$	$-78(7)$	$293(7)$
$\mathrm{O}(1)$	$143(15)$	0	$-40(28)$	$196(13)$	0	$145(17)$
$\mathrm{O}(2)$	$110(14)$	0	$-55(30)$	$252(17)$	0	$194(21)$
$\mathrm{O}(3)$	$186(11)$	$11(14)$	$-253(23)$	$84(6)$	$-62(19)$	$381(19)$
$\mathrm{O}(4)$	$185(11)$	$44(13)$	$-211(22)$	$82(5)$	$-104(17)$	$339(17)$
$\mathrm{C}(1)$	$191(19)$	0	$-184(34)$	$99(10)$	0	$222(23)$
$\mathrm{C}(2)$	$364(26)$	$16(33)$	$-49(43)$	$144(11)$	$-31(31)$	$258(23)$
$\mathrm{C}(3)$	$138(18)$	0	$-203(40)$	$142(13)$	0	$372(33)$
$\mathrm{C}(4)$	$252(20)$	$13(22)$	$-133(50)$	$90(8)$	$-61(30)$	$569(35)$
$\mathrm{C}(5)$	$396(36)$	$130(41)$	$-84(63)$	$228(19)$	$-153(45)$	$427(35)$

Table 2. Bond angles $\left({ }^{\circ}\right)$
Estimated standard deviations range from 0.3 to 0.7°.

$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{O}(4)$	$109 \cdot 6$	$\mathrm{O}(3)-\mathrm{Si}(3)-\mathrm{O}\left(3^{\prime}\right)$	$106 \cdot 9$
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{O}\left(4^{\prime}\right)$	$108 \cdot 4$	$\mathrm{O}(2)-\mathrm{Si}(3)-\mathrm{C}(3)$	$110 \cdot 8$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(1)$	$109 \cdot 1$	$\mathrm{O}(3)-\mathrm{Si}(3)-\mathrm{C}(3)$	$11 \cdot 0$
$\mathrm{O}(4)-\mathrm{Si}(1)-\mathrm{C}(1)$	$110 \cdot 0$	$\mathrm{O}(3)-\mathrm{Si}(4)-\mathrm{O}(4)$	$109 \cdot 7$
$\mathrm{O}(1)-\mathrm{Si}(2)-\mathrm{O}(2)$	$109 \cdot 1$	$\mathrm{O}(3)-\mathrm{Si}(4)-\mathrm{C}(4)$	$106 \cdot 5$
$\mathrm{O}(1)-\mathrm{Si}(2)-\mathrm{C}(2)$	$107 \cdot 0$	$\mathrm{O}(3)-\mathrm{Si}(4)-\mathrm{C}(5)$	$108 \cdot 7$
$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(2)$	$109 \cdot 9$	$\mathrm{O}(4)-\mathrm{Si}(4)-\mathrm{C}(4)$	$107 \cdot 9$
$\mathrm{C}(2)-\mathrm{Si}(2)-\mathrm{C}\left(2^{\prime}\right)$	$113 \cdot 7$	$\mathrm{O}(4)-\mathrm{Si}(4)-\mathrm{C}(5)$	$10 \cdot 6$
$\mathrm{O}(2)-\mathrm{Si}(3)-\mathrm{O}(3)$	$108 \cdot 5$	$\mathrm{C}(4)-\mathrm{Si}(4)-\mathrm{C}(5)$	$113 \cdot 3$

$\mathrm{O}(1), \mathrm{Si}(2), \mathrm{O}(2)$ and $\mathrm{Si}(3)$ coincides with the mirror plane of the cell. The least-squares plane $P 2$ formed by $\mathrm{Si}(1), \mathrm{O}(4), \mathrm{Si}(4), \mathrm{O}(3)$ and $\mathrm{Si}(3)$ and $P 1$ form an angle of $120 \cdot 4^{\circ}$. None of the atoms forming $P 2$ has a distance from the plane greater than $0.01 \AA$. The plane $P 3$, defined by $\mathrm{Si}(2), \mathrm{Si}(4)$ and $\mathrm{Si}\left(4^{\prime}\right)$ (the prime indicates an atom related by mirror symmetry to the atom with the same serial number) is a pseudo-mirror plane of the molecule. The differences in distances of corresponding atoms on opposite sides of $P 3$ are not significant; $\mathrm{C}(2), \mathrm{C}(4)$ and $\mathrm{C}(5)$ are close to $P 3(0 \cdot 03-0.06 \AA)$. The symmetry of the molecule is therefore near to $\overline{6} 2 \mathrm{~m}$; the axis through $\mathrm{Si}(1)$ and $\mathrm{Si}(3)$ is the pseudo-triad. $\mathrm{Si}(1)-\mathrm{C}(1)$ and $\mathrm{Si}(3)-\mathrm{C}(3)$ coincide almost exactly with the pseudo-triad.

Table 3 contains the average bond distances and angles of $\mathrm{T}_{2} \mathrm{D}_{3}$ and the data of some related compounds measured by X-ray methods. An important characteristic of cyclic siloxanes is the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle; its value in $T_{2} \mathrm{D}_{3}$ corresponds to the data for cyclic polysiloxanes with eight-membered rings. From the Si-C bonds in $\mathrm{T}_{2} \mathrm{D}_{3}$, those belonging to the two T units are noticeably shorter than the other six; averages are 1.815 and $1.894 \AA$ respectively. Though the errors of measurements have a large influence on the positional parameters of the methyl groups because of their high temperature factors, one can assume that the large difference (about 5σ) is - at least partly - accounted for by the fact that the $\mathrm{Si}-\mathrm{C}$ bonds in the T units are more ionic than those in the D units. For the non-bonded intramolecular $\mathrm{Si} \cdots \mathrm{Si}$ distances $\mathrm{Si}(1) \cdots \mathrm{Si}(3)$ is 3.763 \AA, the other six range from 3.084 to $3.097 \AA$. The shortest intermolecular distances are those between neighbouring methyl groups ranging from 3.91 to $4 \cdot 27 \AA$.

The calculations were performed on the ODRA 1304 computer at the Computing Centre of the Faculty of Sciences of the L. Eötvös University; the authors thank the staff of the computing centre. We are indebted to Dr Gy. Argay for producing the ORTEP drawing.

Table 3. Characteristic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of some cyclic polysiloxanes

	$\mathrm{Si}-\mathrm{O}$	Si-C	$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$	$\mathrm{C}-\mathrm{Si}-\mathrm{C}$
$\mathrm{T}_{2} \mathrm{D}_{3}$	1.618	1.874	$145 \cdot 6$	108.9	$113 \cdot 5$
Octamethylspiro-5,5-pentasiloxane ${ }^{a}$	1.63	1.88	130	107	106
Hexamethylcyclotrisiloxane ${ }^{\text {b }}$	1.61	1.99	136	104	106
Octamethylcyclotetrasiloxane ${ }^{\text {c }}$	1.65	1.92	142.5	105	106
Octa(methylsilsesquioxane) ${ }^{\text {d }}$	1.612	1.895	145	110	
N-Ethyl-2,2,4,4,6,6-hexaphenyl-3-azacyclotrisiloxane ${ }^{e}$	1.642	1.875	131.9	108.0	108.4
Hexaphenylcyclotrisiloxane ${ }^{f}$	$1 \cdot 64$	1.83	$131 \cdot 9$	107.7	$112 \cdot 6$
2,6-cis-Diphenylhexamethylcyclotetrasiloxane ${ }^{g}$	1.631	1.851	$144 \cdot 2$	109.5	$112 \cdot 5$
trans-1,2,3-Trimethyl-1,2,3-triphenylcyclotrisiloxane ${ }^{h}$	$1 \cdot 65$	1.88	132	107	112

(a) Roth \& Harker (1948) ; (b) Peyronel (1954); (c) Steinfink, Post \& Fankuchen (1955); (d) Larsson (1960); (e) Fink \& Wheatley (1967); (f) Bokii, Zakharova \& Struchkov (1972); (g) Carlström \& Falkenberg (1973); (h) Shklover, Bokii, Struchkov, Adrianov, Zavin \& Svistunov (1974).

References

Boki, N. G., Zakharova, G. N. \& Struchkov, Yu. T. (1972). Zh. Strukt. Khim. 13, 291-297.

Carlström, D. \& Falkenberg, G. (1973). Acta Chem. Scand. 27, 1203-1209.
Fink, W. \& Wheatley, P. J. (1967). J. Chem. Soc. (A), pp. 1517-1519.
Garzó, G. \& Alexander, G. (1971). Chromatographia, 4, 554-560.
Garzó, G., Székely, T., Tamás, J. \& Ujszászi, K. (1971). Acta Chim. Acad. Sci. Hung. 69, 273-299.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 201-209. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Larsson, K. (1960). Ark. Kem. 16, 203-208.
Main, P., Germain, G. \& Woolfson, M. M. (1970). multan. Univs. of York and Louvain.
Peyronel, G. (1954). Atti Acad. Nazl. Lincei Rend. Classe Sci. Fis. Mat. Nat. 16, 231-236.
Roth, W. L. \& Harker, D. (1948). Acta Cryst. 1, 34 42.

Shklover, V. E., Bokii, N. G., Struchkov, Yu. T., Andrianov, K. A., Zavin, B. G. \& Svistunov, V. S. (1974). Zh. Strukt. Khim. 15, 90-98.

Steinfink, H., Post, B. \& Fankuchen, I. (1955). Acta Cryst. 8, 420-424.

Acta Cryst. (1975). B31, 1217

6-Methyl-5-thioformylpyrrolo[2,1-b|thiazole

By R.C.G. Killean, J. L. Lawrence, J. U. Cameron* and Aysel Sharma \dagger
School of Physical Sciences, University of St. Andrews, St. Andrews, Scotland

(Received 1 November 1974; accepted 13 January 1975)

Abstract

C}_{8} \mathrm{H}_{7} \mathrm{NS}_{2}\), monoclinic, space group $P 2_{1} / c$, $a=9.350$ (3), $b=12 \cdot 130$ (3), $c=7 \cdot 216$ (3) $\AA, \beta=98 \cdot 00$ (4) ${ }^{\circ}, Z=4, D_{c}=1.483 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.032,662$ reflexions. The thioformyl group is in the syn configuration. The thioformyl group and the atoms of the pyrrole ring are planar, this plane being inclined at an angle of $1 \cdot 6^{\circ}$ to the plane of the thiazole ring.

Introduction. The crystals were dark red, elongated along c. The cell parameters were obtained from the best orientation matrix on a Siemens four-circle diffractometer.

The intensities of 662 independent reflexions were measured on the diffractometer with Mo $K \alpha$ radiation and a Zr filter. The five-point measuring cycle was employed and some 592 of the reflexions were measured within a counting statistics accuracy of between 2 and 6%, the remainder being measured to between 6 and 14%. The integrated intensities of three standard reflexions measured every 30 reflexions did not change significantly over the collection period. No absorption corrections were made ($\mu=5.62 \mathrm{~cm}^{-1}$). An earlier lowaccuracy data set had been used to obtain the coordinates of the two S atoms from a Patterson synthesis. A Fourier summation phased on these atoms gave the positions of all the non-hydrogen atoms, but the subsequent least-squares refinement stopped at an R of $0 \cdot 14$. From these coordinates and the new data set, three cycles of least-squares refinement with iso-

[^1]tropic temperature factors ($R=0.089$) were followed by three cycles with anisotropic temperature factors ($R=0.046$). A difference map then clearly showed the positions of all seven H atoms. A final refinement of the non-hydrogen atoms was then carried out with absolute weights (Killean \& Lawrence, 1969) with 0.0003 and 0.0012 for c^{2} and k^{2} respectively. This gave an R of 0.032 where
$$
R=\frac{\sum| | F_{o}\left|-\left|F_{c}\right|\right.}{\sum\left|F_{o}\right|}
$$
and a value
$$
\frac{\sum w \Delta^{2}}{m-n}=0.94
$$

Three reflexions, 102, 391, and 5,11,1 had large values of $|\Delta| / \sigma\{4 \cdot 4,3 \cdot 9$, and $4 \cdot 1$ respectively $\}$ suggesting that these reflexions are affected by some systematic error. Scattering factors were taken from International Tables for X-ray Crystallography (1962). The final atomic coordinates and temperature factors are listed in Tables 1 and $2 . \ddagger$

Discussion. The structures of two other pyrrolo[2,1-b]thiazoles, 3,6-dimethyl-5-thioformylpyrrolo[2,1-b]thiazole (Sharma \& Killean, 1974) and 3-methyl-6-t-butyl-5-thioformylpyrrolo[2,1-b]thiazole (Sharma, Lawrence \& Killean, 1975) have been determined to compare the
\ddagger A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30859 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30823 (37 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.

[^1]: * Present adress: The Manse, St Stephens Church, Broughty Ferry, Dundee.
 \dagger Present address: Physics Department, University of Benin, Benin City, Nigeria.

